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Abstract: Electrical Impedance Spectroscopy (EIS) has been widely used as a label-free and rapid
characterization method for the analysis of cells in clinical research. However, the related work
on exosomes (40–150 nm) and the particles of similar size has not yet been reported. In this study,
we developed a new Lab-on-a-Chip (LOC) device to rapidly entrap a cluster of sub-micron particles,
including polystyrene beads, liposomes, and small extracellular vesicles (exosomes), utilizing an
insulator-based dielectrophoresis (iDEP) scheme followed by measuring their impedance utilizing an
integrated electrical impedance sensor. This technique provides a label-free, fast, and non-invasive
tool for the detection of bionanoparticles based on their unique dielectric properties. In the future,
this device could potentially be applied to the characterization of pathogenic exosomes and viruses
of similar size, and thus, be evolved as a powerful tool for early disease diagnosis and prognosis.

Keywords: nanovesicle; biological nanoparticles; exosome; impedance; dielectrophoresis; biosensing;
microfluidics; lab-on-a-chip

1. Introduction

Electrical Impedance Spectroscopy (EIS) has been desirable for the characterization
of various biological entities, including various cell types, waterborne parasites, bacteria,
and bacteria spores, since it can be used as a label-free method with minimal sample
preparation procedure [1–12]. This technique has been used to differentiate various cell
types and to identify abnormal or tumor cells [13,14]. One popular design for EIS is
the single cell impedance cytometry, in which a pair of facing or coplanar electrodes are
embedded in a microfluidic channel [2,3,5,15–19]. The electrodes are energized with a
voltage at one or more discrete frequencies, generating an electric field within the channel.
As a single cell passes through the microfluidic channel, the fluctuation of the electric
current is detected, and thus, provides the impedance of a single cell. Another strategy
is based on the static state impedance measurement approach, in which a single cell is
manipulated to be placed at the center of the electrodes, and thus, the electric field in the
detection volume is altered due to the presence of the cell [4,14,20]. However, the related
work on small extracellular vesicles (exosomes) with diameters of 40–150 nm and the
particles of similar size has not yet been reported. The main challenge for adapting this
system for analysis of a single vesicle is that the scale of the channel and/or electrodes must
be miniaturized to the corresponding size scale of the target vesicle in order to achieve a
reliable sensitivity [4]. Although the device with a miniaturized channel and electrodes
could be fabricated, it is very challenging to pass a single vesicle, one at a time, through the
channel or manipulate it to the designated position. In addition, a high applied pressure
would be needed to overcome the high resistance of the submicron channel to omit the
channel’s blockage by the vesicles.
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Dielectrophoresis (DEP) has been utilized for isolating and manipulating micro-/nano-
scale particles and biomolecules due to its rapid and label-free criteria [21–25]. Moreover,
we have previously demonstrated that a new insulator-based dielectrophoretic (iDEP) de-
vice made of an array of micropipettes can be utilized for rapid entrapment of nanovesicles
based on their unique dielectric properties at pipettes’ pores, which is due to the balance of
three electrokinteic forces including dielectrophoretic (DEP), electrophoretic (EP), and elec-
troosmotic (EOF) forces [26,27]. In this paper, we have fabricated a microchip to rapidly
entrap a cluster of vesicles utilizing an iDEP scheme by applying a direct current (DC)
followed by simultaneously measuring their impedance by embedded microelectrodes
and applying an alternative current (AC) at a wide frequency spectrum. By using this
method, the sub-micron particles could be entrapped in a micro-scale trapping zone and
be detected by impedance probing without losing the sensitivity and facing the blockage
issue. In addition, electrolyte solutions with different ionic strengths with and without
suspended particles have been utilized to study the capability of the device to differentiate
between nanoparticles with different dielectric properties. The microchip was able to
differentiate between various sub-micron particles of similar size, including polystyrene
beads, liposomes, and exosomes and, thus, it has the potential to be further evolved as a
characterization tool for differentiation of circulating nanovesicles for diagnostic purposes.

2. Materials and Methods
2.1. Materials

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA) unless oth-
erwise noted. Carboxylic acid polystyrene (COOH-PS) beads (100 nm) were obtained
from Phosphorex Inc. (Hopkinton, MA, USA). N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-
dihexadecanoyl-sn-glycero-3-phosphoethanolamine (NBD-DHPE) fluorescently labeled
100 nm liposomes were purchased from FormuMax Scientific Inc. (Sunnyvale, CA, USA).
Telomerase reverse transcriptase (hTERT) Mesenchymal Stem Cell Exosomes with the aver-
age diameter of 146 nm were purchased from ATCC (Manassas, VA, USA). The zeta poten-
tial and the size distribution for all the particles have been shown in Table S1. Silicone elas-
tomer base and curing agent were purchased from Dow Corning (Elizabethtown, KY, USA).
Gold etchant (Type TFA) and chromium etchant (1020AC) were obtained from Transene
Company Inc. (Danvers, MA, USA). Photoresist AZ5214E and developer AZ917 MIF were
purchased from Integrated Micro Materials (Argyle, TX, USA). SU-8 2050, SU-8 devel-
oper, and OmniCoat were obtained from Microchem Corp. (Westborough, MA, USA).
Polyimide PI2610 and adhesion promoter MV652 were obtained from Hitachi DuPont
MicroSystems LLC. (Parlin, NJ, USA). Heat seal connectors were obtained from Elform
Inc. (Reno, NV, USA). The home-designed printed circuit board (PCB) was fabricated by
PCB Universe (Vancouver, WA, USA). Glass slides were purchased from Ted Pella Inc.
(Redding, CA, USA).

2.2. Preparation of Sub-Micron Particles

Electrolyte solutions containing different potassium chloride (KCl) concentrations
(10, 100, and 500 mM) were prepared at pH 7.0. The conductivity of KCl solutions were
measured utilizing a conductivity meter (Oakton Cond 6+) as: 0.3 S/m for 10 mM KCl,
1.4 S/m for 100 mM KCl, and 5.9 S/m for 500 mM KCl.

COOH-PS beads (100 nm) were re-suspended into 10 mM KCl to the final concentra-
tion of 1.8 × 108/mL and 2.3 × 1012/mL. The 100 nm liposomes were re-suspended into
10 mM KCl at a final concentration of 1.9 × 1011/mL. Then, 146 nm hTERT Mesenchymal
Stem Cell Exosomes were distributed in 10 mM KCl with the concentration of 6.1× 109/mL.
The zeta potential of COOH-PS beads, liposomes, and exosomes dispersed in 10 mM KCl
at 25 ◦C were measured at least 3 times using the Zetasizer-NanoBrook Omni (Brookhaven
Instruments, Holtzville, NY, USA).
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2.3. Device Layout and Fabrication

The Lab-on-a-Chip (LOC) device was designed with AutoCAD 2018. The picture of
the LOC device was shown in Figure 1a, and a cross-sectional view of the LOC device
was shown in Figure 1b. The device contained seven layers as follow: the glass substrate,
the first polyimide (PI) layer to improve the adhesion strength of the substrate, the sensing
electrodes, second PI layer to avoid short circuit of different electrode layers, the trapping
electrodes, the SU-8 obstacles, and the polydimethylsiloxane (PDMS) chambers.
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Figure 1. (a) The picture of the Lab-on-a-Chip (LOC) device. (b) Schematic of the LOC device including the insulator-based
dielectrophoresis (iDEP) module for particle trapping (polydimethylsiloxane (PDMS) chamber, SU-8 obstacles, and Trapping
electrodes) and the impedance sensing module (Sensing electrodes).

The first PI layer was deposited to increase the adhesion between gold and the glass
substrate. Prior to the deposition of PI, adhesion promoter VM652 was spin-coated at
2000 rpm for 30 s. PI2610 was then spread at 500 rpm for 5 s followed by 5000 rpm for 30 s to
form a 1 µm thin film (Figure 2a). To fabricate the sensing electrodes, a layer of metal (10 nm
Cr and 200 nm Au) was deposited on the PI-coated substrate using the E-beam evaporator
(Figure 2b). The deposited metal was patterned using the photolithography technique
with AZ5214E as the positive photoresist and MIF 917 as the developer. A pair of digital
sensing electrode arrays was then created by etching the redundant Au and Cr on the
first metal layer. Afterwards, the photoresist residual was removed by acetone (Figure 2c).
Prior to the deposition of the trapping electrodes, adhesion promoter VM652 and PI2610
were spin-coated to insulate the sensing electrodes (Figure 2d). Then, 10 nm Cr and 200
nm Au were then deposited (Figure 2e) and patterned (Figure 2f). EVG620 mask aligner
was used to align the trapping and the sensing electrodes. The width and the length of
each trapping electrode was designed to be 0.25 and 26 mm, and the distance between
the trapping electrodes was 2 mm. In order to connect the sensing electrodes with the
digital impedance analyzer (HF2LI, Zurich Instrument, Zurich, Switzerland), the PI film
that covered the corresponding area was removed by a reactive ion etching (RIE) process
with the photoresist AZ5214 as the shadow mask. After the pattern was properly defined,
two large rectangular windows (9 mm × 8.5 mm) on the sides and a narrow rectangular
window (34 µm × 23 mm) in the middle of the device were etched utilizing RIE process
(Technics 85 Reactive Ion Etcher, 190 mTorr, 150 W, 6 min) to expose the tails and tips of the
sensing electrodes, respectively (Figure 2g).

Moreover, to develop the obstacles, as trapping zones, a layer of negative photoresist
SU-8 2050 was spin-coated at 3000 rpm for 30 s to obtain a 50 µm film (Figure 2h). Prior to
SU-8 coating, a thin layer of OmniCoat was spin-coated at 3000 rpm for 30 s to allow
easy stripping of SU-8 and improve the adhesion. The SU-8 layer was exposed under
160 mJ/cm2 ultraviolet light with a mask and developed with SU-8 developer to create
triangular obstacles with 10 µm width separation (Figure 2i). RIE was then performed to
remove the residual OmniCoat (Figure 2j). A polydimethylsiloxane (PDMS) chamber was
created by pouring the mixture of silicone elastomer base and curing agent (volume ratio
10:1) on a glass slide and heating to 70 ◦C for 4 h. After the PDMS was fully crosslinked,
it was peeled off from the glass slide and cut into rectangular pieces that were 2 cm in
width and 4 cm in length. Six holes, with diameters of 3.5 mm, were punched as the
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inlets and outlets. At the final stage, the PDMS chamber was adhered on the device to
cap the SU-8 obstacles and create the opening with the dimension of 10 µm × 50 µm.
A heat seal connector was used to connect the tail of the electrodes on the microchip to a
home-designed PCB board. The PCB board was then connected to the power supply and
the digital impedance analyzer to apply voltage and conduct the impedance measurement.
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2.4. Particle Trapping and Impedance Measurement

A volume of 25µL of electrolyte solution containing different particles including 1.8× 108/mL
and 2.3× 1012/mL COOH-PS beads, 1.9× 1011/mL liposomes, and 6.1× 109/mL exosomes were
injected in to different device chambers. A 5 V/mm DC bias was applied across the trapping
electrodes using a Keithley 2220 G-30-1 voltage generator for 5 min. The microscopic
images were recorded using an inverted microscope, Olympus IX71, equipped with a
high-resolution camera, Andor NeoZyla 5.5.

Impedance measurement was conducted utilizing the digital impedance analyzer
(HF2LI, Zurich Instrument, Zurich, Switzerland) as an AC field with a peak amplitude of
100 mV swept from 1 kHz to 10 MHz to record the magnitude and phase components at each
frequency. Afterwards, the data was processed with a custom script written in MATLAB
(MathWorks Inc., Natick, MA, USA) for statistical analysis. The impedance signals were
recorded at a sampling rate of 225 samples/s. Each measurement was repeated at least 3
times. Furthermore, to rule out the effect of the particles concentration and to demonstrate
the difference between the particle’s dielectric properties, the impedance was normalized
based on the ‘opacity’ concept which was reported by Gawad et al. (Equation (1)) [15,28,29]:

O f =
Z( f )

Z(0.5 MHz) (1)
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where Z( f ) and Z(0.5 MHz) are the impedance magnitude measured at frequencies higher
than 0.5 MHz and at 0.5 MHz, respectively. This has been widely applied in cell cytometry
to normalize the impedance with respect to the cell size and position since the impedance
at 0.5 MHz typically reflects the particle size information [5,13,29,30].

The impedance sensitivity has been analyzed based on the following equation [31]:

S = |∆Z̃|
|Z̃m |

= ||Z̃mix |−|Z̃m ||
|Z̃m |

. (2)

where ∆Z̃ is the impedance change due to the presence of particles, Z̃m is the complex
impedance of the detection volume containing medium, and Z̃mix is the complex impedance
of the mixture (the medium and the particles ) in the detection volume.

Statistical analysis was performed using the student’s t-test and two-way analysis of
variance. Difference with p-values less than 0.05 were considered significant.

After impedance measurements, the device was cleaned by the established Lab-on-
Chip device cleaning protocol [32]. Specifically, the device was injected with DI water to
push most of the particles out of the channel. Afterwards, the device was soaked in the
mild detergent solution, methanol, acetone, and DI water for five minutes each with an
ultrasonic bath environment to completely remove the residue.

2.5. Finite Element Analysis

Finite-element software, COMSOL Multiphysics 5.2a (COMSOL Inc., Burlington, MA,
USA), was utilized to determine the distribution of the electric field gradient as 5 V/mm
DC was applied across the gap which was created by SU-8 obstacles. The height of the
SU-8 obstacles was 50 µm and the gap distance between a pair of triangular SU-8 obstacles
was 10 µm. The conductivity and relative permittivity of the suspending solution in
the model was set as 0.3 S/m and 80 to mimic the conductivity of 10 mM KCl solution.
The temperature and pressure were assumed to be 298 K and zero Pa, respectively.

The migration mobility of ionic species (u) was computed using the Nernst–Einstein
relation (3):

u = Di
RT (3)

in which, Di is the diffusion coefficient, R is the molar gas constant and T is the absolute
temperature. For 10 mM KCl, the value of Di was set as 2 × 10−9 m2·s−1.

Boundary conditions corresponding to the solution obtained from the Poisson–Boltzmann
equation for electric potential were applied. The boundary conditions established that the
electric potential was not diverged and the gradient of this potential on the SU-8 surface
varied with the change in surface charge density [33].

2.6. Theoretical Modeling and Equivalent Circuit

A simplified equivalent circuit model (Figure 3) was used to demonstrate the physi-
cal principle of the impedance measurement system [34–36]. In this model, the channel
impedance Zch is in series with an electrical double layer capacitance Cdl and is in parallel
with a stray capacitance Cstray [34–36]. In addition, a lead inductance (Lld) was included in
the equivalent circuit, which is associated with the electrodes and the cables connecting the
device to the impedance analyzer [37,38]. The values of Cdl, Cstray, and Lld were obtained via
measurements on electrolyte solutions with well-known electrical properties, followed by
fitting into the combination of constant phase element and Cole–Cole model [38,39]. Fit-
ting parameters that were used throughout this theoretical modeling were Cdl = 10 pF,
Cstray = 2.2 pF, and Lld = 6 µH, respectively.
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Channel impedance Zch was calculated based on Maxwell’s mixture theory (Equation
(4)) [17,40]:

Z̃ch = 1
jωε̃mixG f

(4)

where ε̃mix is the equivalent complex permittivity of the mixture of particles and the
medium, ω is the angular frequency, and G f is the geometrical constant of the system.

The equivalent complex permittivity of mixture of homogeneous spherical particles
in suspension can be calculated as:

ε̃mix = ε̃m
1+2φ f̃CM
1−φ f̃CM

(5)

where φ is the volume fraction (the volume ratio between the particle and the suspending
system), which is estimated as 0.1 for COOH-PS based on the estimated size of entrapped
particles cluster under the microscopy; f̃CM is the complex Clausius–Mossotti factor, which
is defined as:

f̃CM =
ε̃p−ε̃m
ε̃p+2ε̃m

(6)

where ε̃m and ε̃p are the complex permittivity of the suspending medium and particle
respectively; and ε̃ = ε− jσ

ω , where j2 = −1 and ε and σ are permittivity and conductivity.
The relative permittivity and conductivity of the 100 nm polystyrene beads are set as 2.55
and 7.2 mS/m, respectively [26,41–44].

The geometrical constant G f in Equation (4) can be presented as G f = κw [17], where w
is the width of the electrode and κ is the correction factor describing the fringing field.
The value of κ was derived analytically using the conforming mapping method [17,31,45].
Utilizing this method, κ and geometric constant G f were calculated as 0.73 and 7.3 µm,
respectively (the details of the derivation is provided in the Supplementary Information
(Figure S1)).

3. Results and Discussion
3.1. Particles Entrapment

In our previous work, we have demonstrated that COOH-PS beads, liposomes, and ex-
osomes with sub-micron diameters could be rapidly trapped at the tip of a glass mi-
cropipette due to the balance of DEP, EP, and EOF forces [26,27]. Others have also reported
that the micro-pores constructed by SU-8 or PDMS triangles are effective geometrical
designs to isolate particles and cells utilizing electrokinetics [46,47]. Here, to integrate the
trapping mechanism with the sensing module on a single chip (Figure 4a), we developed
SU-8 constructed micro-pores with 10 µm width and 50 µm height to trap particles utilizing
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DEP. Furthermore, a pair of co-planar electrodes (12 µm × 10 µm with 10 µm gap distance)
were fabricated to measure the impedance of the trapped particles (Figure 4b). A finite
element simulation was carried out to study the distribution of the electric field (E-field)
gradient under DC bias (Figure 4c). The results illustrate that the highest E-field gradient
was localized at the narrowest part of the opening, which was consistent with our previous
study [47].
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Figure 4. (a) The schematic of the impedance measurement system. (b) The bright-field microscopic image of the device. (c)
The finite element analysis of the distribution of the electric field gradient across the opening created by SU-8; the suspending
medium was 10 mM KCl and the applied voltage was 5 V/mm. (d) The fluorescence microscopic images showing the
entrapment of 100 nm fluorescently tagged carboxylic acid polystyrene (COOH-PS) beads with a 5 V/mm bias applied across
the opening for 5 min; the initial particle concentration was 2.3 × 1012/mL and the suspending solution was 10 mM KCl.

A series of experiments were conducted with fluorescently-tagged COOH-PS beads,
fluorescently-tagged liposomes, and exosomes suspended in 10 mM KCl (pH 7.0). A 25
µL solution containing various particles were injected separately into different chambers
of the device and 5 V/mm DC bias was applied across the opening for 5 min. Figure 4d
and Figure S2 show that the particles were trapped at the narrowest region of the opening
as expected.

3.2. Impedance Measurement of Solution with Various Ionic Strengths

To study the capability of the device to differentiate between solutions with different
ionic strengths, and understand the physical principle of the impedance measurement, an
equivalent circuit model was constructed and the theoretical and experimental results were
compared. Figure 5a demonstrates both the theoretical and experimental results of the
impedance when solutions with different conductivities were tested. The theoretical results
were closely matched with the experimental measurements, which implies that the estab-
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lished equivalent circuit model was reliable for predicting the impedance of the system.
In addition, the results were in line with the previously reported observations [48–51] and
suggest that as the frequency increased, the absolute value of impedance decreased for all
solutions. This is due to the fact that the reactive part of the impedance was predominately
capacitive and, thus, the co-planar impedance sensor acted as a capacitor, storing elec-
trochemical energy [49]. Statistical data obtained from the experimental measurements
are shown in Table S2 indicating that the impedance of the solutions was significantly
different from each other (p < 0.05) at a wide frequency spectrum, and thus, the device is
capable of differentiating solutions with different ionic strengths. However, the results
also indicate that the impedance of the solutions with 1.4 and 5.9 S/m conductivities at
frequency≥ 10 MHz were not significantly different from each other. This could be justified
since the stray capacitance is dominated at frequency ≥ 10 MHz which resulted in the
reduction of the difference in their impedance. [52]. In addition, to further investigate
the capability of the circuit model to predict the impedance of the particles, theoretical
results and experimental measurements were compared utilizing the well-defined 100 nm
COOH-PS beads suspended in 10 mM KCl. Figure 5b demonstrates that the theoretical
results were closely matched with the experimental measurements, which proves that the
established equivalent circuit model is reliable for predicting the impedance of the system
with added beads.
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Figure 5. (a) The theoretical modeling and experimental results showing the impedance of solutions with different
conductivities as a function of frequency. (b) The theoretical modeling and experimental results showing the impedance
of COOH-PS beads suspended in 10 mM KCl. The error bars represent the standard deviation and each experiment was
repeated at least three times.

3.3. Impedance Measurements of Sub-Micron Particles in Solution

To investigate the impedance response of different sub-micron particles, COOH-PS
beads, liposomes, and exosomes, suspended in 10 mM KCl were injected into different
chambers of the device. The particles were trapped at the triangular trapping zones by
applying DC bias, and their impedances were recorded under AC field. The impedance
of the entrapped liposomes and COOH-PS beads were increased when compared to the
solution containing no particles (Figure 6a). This result could be justified since the lipid
bilayer in liposome and the bulk polystyrene materials in COOH-PS beads have lower
conductivities when compared to the surrounding medium, and, thus, resulting in the
enhancement of the channel resistance [53,54]. However, as exosomes were incorporated
into the system, a lower impedance was measured. This result suggests that exosomes
were more conductive than the suspending medium, which is because proteins with a
relatively high conductivity are embedded on the exosomes’ membrane [55,56].
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Figure 6. (a) The impedance of different particles suspended in electrolytic (10 mM KCl) solution as a function of frequency.
The initial concentration of the COOH-PS beads was 1.8 × 108/mL. (b) The impedance of the COOH-PS beads with
different initial concentrations suspended in 10 mM KCl solution. The error bars represent the standard deviation and each
experiment was repeated at least three times.

To further study the impedance response of the particles with different concentration,
COOH-PS beads with different initial concentration (1.8 × 108/mL and 2.3 × 1012/mL)
were injected into different chambers of the LOC device and trapped by applying 5 V/mm
DC field for 5 min. The microscopic images in Figure 6b show that as the initial con-
centration of COOH-PS beads was increased, more beads were trapped at the triangular
trapping zone [26]. Consequently, the impedance of the system significantly increased
due to the enhancement of the channel resistance and the reduction of channel capaci-
tance (Figure 6b and Table S3) [53]. The impedance sensitivity calculations are shown in
Table S4, which indicate that the sensitivity of the device is in the range of 0.03 to 0.55.
The obtained values were similar to the sensitivity of cell impedance cytometer estimated
by Sun et al. [31]. In addition, as the initial particle concentration of COOH-PS beads
increased from 1.8 × 108/mL to 2.3 × 1012/mL, the impedance sensitivity significantly
increased due to the increase of the mixture impedance (the medium and the particle ) in
the detection volume.

To rule out the effect of the particles’ concentration on their impedance and only
show the effect of their dielectric properties by impedance measurements, the results
were normalized based on the opacity concept [3,15,28]. The impedance of the COOH-
PS beads with different initial concentration (1.8 × 108/mL and 2.3 × 1012/mL) were
normalized based on opacity magnitude and plotted in Figure 7a and summarized in Table
S5. The results demonstrate that there were no significant differences (p > 0.05) between
the opacities of COOH-PS beads with different initial concentrations.
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To further investigate the capability of the system to differentiate between particles
with different dielectric properties, the opacity magnitude of three types of particles with
different compositions were analyzed and plotted in Figure 7b. A detailed representation of
the data with statistical analysis is shown in Table S6. The results show that COOH-PS beads
and exosomes were differentiated at frequency range ≥ 1 MHz, and COOH-PS beads and
liposomes were differentiated at the frequency range≥ 2 MHz. This results indicate that the
dielectric properties of the COOH-PS beads is vastly different from the nanovesicles due to
the difference of composition and surface charge (Table S1) [13,29]. In addition, liposomes
and exosomes could be differentiated at the frequency range ≥ 6 MHz, which most likely
reflects on differences in their membrane capacitance due to the presence of proteins on the
exosomes’ membrane [13,29,55].

4. Conclusions

In this study, we have demonstrated a microchip device which is capable of entrap-
ment of nanovesicles utilizing an insulator-based dielectrophoretic (iDEP) module and
an integrated impedance measurement system to characterize the nanovesicles based on
their dielectric properties. The device is comprised of SU-8 obstacles to create micron-size
openings to create a non-uniform electric field in order to entrap particles as a result of
the balance of three electrokinetic forces under DC bias. The entrapped particles could
be further analyzed based on their impedance by an integrated co-planar sensor under
AC field and a wide frequency spectrum. The impedance of solution with different ionic
strengths and the well-defined COOH-PS beads were measured to validate our empirical
results and the results were matched with the theoretical equivalent circuit model. Also,
the results obtained by analysis of nanoparticles (COOH-PS) and nanovesicles (liposomes
and exosomes) of similar size, demonstrated that the device is capable of discriminating
between different particles with different compositions and hence, different dielectric
properties at a frequency range of ~2 to 10 MHz. As a result, the proposed device could
potentially be applied for characterization and detection of pathogenic nanovesicles based
on their unique dielectric properties, and thus, further evolved as a powerful tool for early
disease diagnosis and prognosis.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
66X/12/1/11/s1, Figure S1: Diagrams showing the conformal transformation from physical plane
(x,z) to model plane (u,v). Figure S2: (a) The microscopic images of entrapped fluorescently-tagged
liposomes. (b) The microscopic images of entrapped hTERT Mesenchymal Stem Cell Exosomes.
A 5 V/mm bias was applied across the channel for 5 min and the suspending solution was 10 mM KCl.
Table S1: Zeta potential and size of COOH-PS beads, liposomes, and exosomes. The zeta potential of
particles were measured in 10 mM KCl. Table S2: The statistical data for the impedance measurement
of different electrolyte solutions. p-values were obtained from two-tail unpaired student t-test.
The highlighted data are significantly different. Table S3: The statistical data for the impedance
measurement of different particles suspended in 10 mM KCl. p-values were obtained from two-tails
unpaired student t-test. The highlighted data are significantly different. Table S4: The statistical data
for the impedance sensitivity of different particles. p-values were obtained from two-tail unpaired
student t-test. The highlighted data are significantly different. Table S5: The statistical data for
the opacity magnitude of COOH-PS beads with different concentration suspended in 10 mM KCl.
p-values were obtained from two-tail unpaired student t-test. Table S6: The statistical data for the
opacity magnitude of different particles suspended in 10 mM KCl. p-values were obtained from
two-tail unpaired student t-test. The highlighted data are significantly different.
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