

ScienceDirect

Environmental Research Volume 195, April 2021, 110861

Interactions between cerium dioxide nanoparticles and humic acid: Influence of light intensities and molecular weight fractions

Hongliang Dai ^{a, b, c} 은 쯔, Tongshuai Sun ^a 쯔, Ting Han ^a 쯔, Xiang Li ^d 쯔, Zechong Guo ^{a, b, c}쯔, Xingang Wang ^a 은 쯔, Yong Chen ^b 은 쯔

- ^a School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang, 212018, China
- ^b School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- ^c Jiangxi Jindalai Environmental Protection Co., Ltd, Nanchang, 330100, China
- ^d School Energy & Environment, Southeast University, 2 Sipailou Road, Nanjing, 210096, China

Received 25 December 2020, Revised 1 February 2021, Accepted 5 February 2021, Available online 15 February 2021, Version of Record 18 February 2021.

Check for updates

Show less 🔨

😪 Share 🌗 Cite

https://doi.org/10.1016/j.envres.2021.110861

Get rights and content

Abstract

<u>Cerium</u> dioxide nanoparticles (CeO₂ NPs) are ubiquitous in the water environment due to the extensive commercial applications. The complexity of heterogeneous <u>humic acid</u> (HA) plays a significant role in affecting the <u>physicochemical properties</u> of CeO₂ NPs in aqueous environments. However, the effects of <u>light intensities</u> and HA fractions on the interaction mechanism between CeO₂ NPs and HA are poorly understood. Here, we provided the evidence that both <u>light intensities</u> (>3 E L⁻¹ s⁻¹) and molecular weights (>10 kDa) can effectively affect the interactions between CeO₂ NPs and HA. The absolute content of <u>reactive</u>

Interactions between cerium dioxide nanoparticles and humic acid: Influence of light intensities and molecular weight fractions - Scie...

oxygen species (ROS) and quantum yield (Φ) of ³HA* were inhibited when HA (10 mg of C L⁻¹) interacts with CeO₂ NPs. However, they were positively correlated with the increasing irradiation time and simulated sunlight intensities. High molecular weights of HA fraction (>100 kDa) restrained the ROS generation and Φ of ³HA* due to surface adsorption between HA and CeO₂ NPs blocking reactive sites, competitive absorption for simulated sunlight. Fourier transform infrared and three-dimensional excitation-emission matrix <u>fluorescence</u> <u>spectroscopy</u> confirmed that the carboxylic groups of HA have high complexation capacity with CeO₂ NPs. These findings are essential for us to improve the understanding of the impacts of HA on CeO₂ NPs under different conditions in natural waters.

Introduction

Nanotechnology is one of the fastest developing technologies in recent decades, leading to increasing use of engineered nanoparticles (ENPs) in many industrial applications including commercial products and water treatment (Abbas et al., 2020; Zhang et al., 2020). ENPs have been extensively applied in many sectors including electronic (Yue et al., 2018), pharmaceutical (Shan et al., 2018), environmental remediation (Li et al., 2019), and energy (Wang et al., 2017) due to their large surface area (Metreveli et al., 2020), structural diversity (Falcaro et al., 2016), and excellent electron transfer ability (Chen et al., 2019). It has been reported that the global production of CeO_2 NPs was 101–1000 t in 2010, and production is expected to be 1800–57,000 t by 2020 (Auta et al., 2017; Piccinno et al., 2012). Consequently, more concerns have been paid to the nanomaterials due to its unintentional release into the environment in growing production and use, which can cause adverse potential risks (Adam et al., 2016; Waghmode et al., 2019).

CeO₂ NPs are one of the most widely used metal oxide-based NPs in the 21st century (Song et al., 2020). It has been extensively used in the glass manufacturing, energy storage, pigments, biomedicine, and foods as well (Celardo et al., 2011; Sendra et al., 2017). Therefore, CeO₂ NPs are easy to enter the aquatic environment, leading to a potential risk to aquatic organisms (Vakondios et al., 2014). CeO₂ NPs, in aquatic environments, inevitably generated reactive oxygen species (ROS) once radiated by natural sunlight, and the oxidative stress induced by ROS generation is the most essential biotoxicity mechanisms of CeO₂ NPs (Celardo et al., 2011; Dai et al., 2020). However, many of the previous studies that explored ROS generation by CeO₂ NPs did not quantify the irradiation intensities of light (Ma, 2012; Ma et al., 2014).

HA is one of the main components of dissolved organic matter (DOM), and ubiquitous in aquatic environment (Kong et al., 2019; Li et al., 2015; Wang et al., 2015). Additionally, it is a complex mixture of molecules with different physical structures, chemical compositions and properties, including carboxyl, alcoholic, phenolic, and ketonic oxygen-containing moieties functional groups (Chen, 2002; Filella, 2008). Under irradiation with light, the individual HA molecule is excited to singlet state (¹HA*) followed by conversion to triplet state (³HA*), which reacts directly with pollutants in aqueous environments through energy or electron transfer interactions (Wan et al., 2019). The process plays an important role in the attenuation of

pollutants (al Housari et al., 2010; Mostafa and Rosario-Ortiz, 2013). However, metal oxide nanoparticles tend to form complexes with HA, thereby affecting its photoreactivity (Chandran et al., 2014). The fluorescence quenching of HA was caused by the complexation of metal oxide nanoparticles in the presence of ZnO NPs (Dai et al., 2020). HA has the ability to inhibit the generation of reactive oxygen species (ROS) under irradiation due to its adsorption onto NPs surface (Chandran et al., 2014). At the same time, the molecular weight distribution of HA can affect the characteristics of HA in water (Zha et al., 2018). Thus, it is necessary to consider environmental factors (i.e., exposure to sunlight, adsorption of HA with different molecular weights) when investigating the interactions between CeO₂ NPs and HA in the environment.

The research on the DOM/CeO₂ NPs interactions was so far limited to the physicochemical processes, such as dissolution, aggregation, and ROS generation (Li et al., 2020a, 2020b), the impacts of light intensities and HA fractions on the interaction mechanism between CeO₂ NPs and HA are rarely investigated. Hence, this study systematically reveals the details of interactions between CeO₂ NPs and HA under various conditions. The crystallinity and morphology of CeO₂ NPs was characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and atomic force microscope (AFM). Aggregation behavior of CeO₂ NPs was systematically studied under different pH by the measurements of zeta potential and particle size. In addition, chemical changes of HA under different light intensities were assessed by ATR-FTIR and Excitation-Emission Matrix (EEM) spectra in the presence of CeO₂ NPs. Change of ROS and ³HA* content under irradiation were monitored, which provides theoretical explanation and insight into the experimental results. At the same time, the interactions between HA with different molecular weights and CeO₂ NPs were determined.

Section snippets

Reagents and materials

CeO₂ NPs with purity >99.5%, purchased from Shanghai Aladdin Biochemical Technology Co., Ltd (Shanghai, China), have a primary particle size < 50 nm. HA and 2,4,6-trimethylphenol (TMP, > 98%) was purchased from Sigma-Aldrich. All reagents in the experiment were of at least analytical grade, and the experimental water was 18.2 MΩ/cm deionized (DI) water....

Nanoparticle characterization

The structure and morphology of CeO_2 NPs were characterized by several techniques including XRD, TEM, and AFM. Details are according to the...

Characterization of CeO₂ NPs

Interactions between cerium dioxide nanoparticles and humic acid: Influence of light intensities and molecular weight fractions - Scie...

The properties of CeO₂ NPs were characterized using XRD, TEM, and AFM, respectively. XRD image of CeO₂ NPs is presented in Fig. S4. The powder XRD analysis showed that the CeO₂ NPs exhibited a typical fluorite-like cubic structure indexed to the JCPDS card (JCPDS NO.34–0394). The TEM images illustrated that the CeO₂ NPs did not have good dispersion, and existed as aggregates. CeO₂ NPs were nearly polygon and the particle size varied in the range of 200–600 nm, which was larger than the primary...

Conclusions

Under natural solar irradiation, the interactions between CeO₂ NPs and HA may generate ROS and ³HA* to different extents, which adds uncertainties with regard to biotoxicity, and affects the attenuation of organic pollutants during wastewater treatment. This study demonstrated that the interactions between CeO₂ NPs and HA were affected by the integrated effects of variations in light time, simulated sunlight intensities, and HA fractions. The increase of light time and incident light intensity...

Credit author statement

Hongliang Dai: Writing – review & editing Methodology, Project administration. Tongshuai Sun: Methodology, Writing – original draft. Ting Han: Writing – review & editing. Xiang Li: Methodology, Writing - review. Zechong Guo: Methodology, Writing – review. Xingang Wang: Writing – review & editing Methodology, Project administration. Yong Chen: Writing – review & editing Methodology, Project administration All authors read and approved the final manuscript....

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper....

Acknowledgements

This research has been supported by the National Natural Science Foundation of China (No. 51908252, 21876056), the China Postdoctoral Science Foundation (No. 2019M652274), and the Postdoctoral Preferred Funding Project of Jiangxi (No. 2019KY17). The English in this document has been checked by a company that provides professional English language editing services. The authors wish to thank the anonymous reviewers for their constructive comments that improved the manuscript....

References (51)

Y. Zhao et al.

The effect of humic acid and bovine serum albumin on the adsorption and stability of ZnO nanoparticles on powdered activated carbon

J. Clean. Prod. (2020)

D. Zhang et al.

The mechanisms and environmental implications of engineered nanoparticles dispersion

Sci. Total Environ. (2020)

H. Xu et al.

Molecular weight-dependent adsorption fractionation of natural organic matter on ferrihydrite colloids in aquatic environment Chem. Eng. J. (2019)

X. Wang et al.

Roles of pH, cation valence, and ionic strength in the stability and aggregation behavior of zinc oxide nanoparticles

J. Environ. Manag. (2020)

F. Von der Kammer et al.

Assessment of the physico-chemical behavior of titanium dioxide nanoparticles in aquatic environments using multi-dimensional parameter testing Environ. Pollut. (2010)

N. Vakondios et al.

Effluent organic matter (EfOM) characterization by simultaneous measurement of proteins and humic matter Water Res. (2014)

J. Song *et al*.

Interpreting the role of NO₃⁻, **SO**₄²⁻, and extracellular polymeric substances on aggregation kinetics of CeO₂ nanoparticles: measurement and modeling Ecotoxicol. Environ. Saf. (2020)

M.H. Shen et al.

Effects of molecular weight-dependent physicochemical heterogeneity of natural organic matter on the aggregation of fullerene nanoparticles in mono- and di-valent electrolyte solutions

Water Res. (2015)

M. Sendra et al.

CeO₂ NPs, toxic or protective to phytoplankton? Charge of nanoparticles and cell wall as factors which cause changes in cell complexity Sci. Total Environ. (2017)

G. Metreveli et al.

Morphology, structure, and composition of sulfidized silver nanoparticles and their aggregation dynamics in river water

Sci. Total Environ. (2020)

View more references

Cited by (1)

Enhanced so<inf>2</inf> absorption capacity of sodium citrate using sodium humate

2021, Catalysts

Recommended articles (6)

Research article

Deposition behavior of dissolved black carbon on representative surfaces: Role of molecular conformation

Journal of Environmental Chemical Engineering, Volume 9, Issue 5, 2021, Article 105921

Show abstract \checkmark

Research article

Heteroadsorption of 17α-ethynylestradiol by multi-walled carbon nanotubes and SiO₂/Al₂O₃ nanoparticles: Effect of surface-coated fulvic acid and alginate

Chemical Engineering Journal, Volume 288, 2016, pp. 516-524

Show abstract \checkmark

Research article

Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(III) on short term effects to the green algae Chlamydomonas reinhardtii

Aquatic Toxicology, Volume 152, 2014, pp. 121-130

Show abstract \checkmark

Research article

Influence of extracellular polymeric substances on the aggregation kinetics of TiO₂ nanoparticles

Water Research, Volume 104, 2016, pp. 381-388

Show abstract \checkmark

Research article

Interactions between cerium dioxide nanoparticles and humic acid: Influence of light intensities and molecular weight fractions - Scie...

The influence of dissolved and surface-bound humic acid on the toxicity of TiO₂ nanoparticles to *Chlorella* sp.

Water Research, Volume 46, Issue 14, 2012, pp. 4477-4487

Show abstract \checkmark

Research article

Impact of wastewater-borne nanoparticles of silver and titanium dioxide on the swimming behaviour and biochemical markers of *Daphnia magna*: An integrated approach

Aquatic Toxicology, Volume 220, 2020, Article 105404

Show abstract \sim

View full text

© 2021 Elsevier Inc. All rights reserved.

Copyright © 2022 Elsevier B.V. or its licensors or contributors. ScienceDirect [®] is a registered trademark of Elsevier B.V.

