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Abstract: Positively charged (cetylpyridinium chloride), negatively charged (sodium dodecyl sul-
fate), and non-charged (polyethylene glycol) surfactants are used as potential foulant in reverse
electrodialysis systems supplying seawater and river freshwater. Fouling tendency of the foulants to
ion-exchange membranes is investigated in terms of the adsorption by electromigration, electrostatic
attraction, and macromolecule interaction in reverse electrodialysis systems. According to theoretical
prediction of fouling tendency, charged foulants in seawater streams could foul ion-exchange mem-
branes significantly. However, the worst fouling behavior is observed when the charged foulants are
present in river streams. As a result of zeta potential measurement, it is found that the Debye length
of the charged foulants decreases due to the higher ionic strength of seawater streams and causes to
lower net electrostatic effect. It finally results in less fouling tendency in reverse electrodialysis.
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1. Introduction

Ion-exchange membranes (IEMs) are polymeric films to provide permselectivity to
anion or cation under concentration or potential gradients. Cation-exchange membranes
(CEMs) and anion-exchange membranes (AEMs) mainly allow cations and anions to
transport, respectively [1,2]. They were often used to be applied for the separation of
charged species in aqueous solutions such as diffusion dialysis and electrodialysis (ED) [3].
Recently, since the state-of-the-art of IEMs has been developed, they started to be used
in energy conversion devices such as redox flow battery, fuel cell, water electrolysis,
reverse electrodialysis (RED), and capacitive deionization [4]. Common properties of IEMs
for the performance in separation and energy conversion devices are high conductivity
under low water content or swelling ratio, low thickness, and low areal resistance [5].
Regarding to the durability of IEMs, the chemical and mechanical stability under normal
operation conditions should be commonly taken into account for all the aforementioned
applications. However, fouling resistance of IEMs or frequent anti-fouling methods such
as back-washing, chemical cleaning, or vibration would be also necessary if aqueous phase
feeds are supplied to the applications mentioned above.

RED is an emerging salinity gradient-based power generation technology. RED has
basically the same configuration of ED, which separates two streams by alternately stacked
CEMs and AEMs. To generate power from Gibbs free energy of mixing by RED, IEMs
stacked in RED retard rapid electrolyte mixing between a relatively lower salt concentration
solution (e.g., freshwater) and a relatively high salt concentration (e.g., natural seawater,
reverse osmosis brine, hypersaline lakes, or produced water hydraulic fracturing) by
providing permselective ion transports of cations and anions through CEMs and AEMs,
respectively [2,6–10]. Recently, RED has been attracted as hydrogen production technology
to convert a pair of electrode reactions on the electrodes into hydrogen as a gaseous
fuel [11–16]. There are various options for the electrode reactions in RED. Traditionally,
the reversible redox couple, ferri-/ferrocyanide (Fe(CN)6

3−/ Fe(CN)6
4−), has been used
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due to no theoretically thermodynamic potential (in a real RED system, low electrode
resistance by activation overpotential) [17]. Another promising electrode reaction could be
water electrolysis. Water electrolysis reactions produce hydrogen and oxygen. Hydrogen
is a valuable gaseous fuel which could be used in a fuel cell or hydrogen combustion
engine. Even though the electrode reactions in RED are main loss in salinity gradient
power generation, the production of hydrogen through the water electrolysis electrode
reactions is surplus value from RED.

As mentioned earlier, membrane fouling is a serious problem causing performance
loss as well as the continuous degradation of the systems using IEMs interacting with
non-charged and charged inorganic/organic matters [7,18–29]. Since freshwater (i.e., river
water) and seawater from natural environment are supplied to RED systems to set up salin-
ity gradient, the streams in RED might include various natural foulants such as colloidal,
organic, scale, and/or bio-foulants, which could be negatively/positively charged or non-
charged [30]. The charged foulants could foul IEMs by the adsorption by electromigration
under electrical field and/or the adsorption by electrostatic force caused by affinity interac-
tion between charged substances and IEMs matrix with charged functional groups. The
non-charged foulants could be also adsorbed on the surface of IEMs by the adsorption by
macromolecule interaction. In other words, positively charged or non-charged substances
might foul CEMs and negatively charged or non-charged substances might foul AEMs in
RED systems. It is reported that natural fresh water and seawater include all kinds of the
aforementioned foulants [31,32]. Nevertheless, most of the studies on the fouling of IEMs
have been intensively focused on only negatively charged foulants such as bovine albumin
serum, humic acid, silica sol, and sodium dodecylbenzenesulfonate [30].

In this study, all kinds of foulants are investigated in RED. Positively charged, neg-
atively charged, and non-charged surfactants are used as potential foulants found in
freshwater and seawater. The effects of the three kinds of foulants existing in dialysate,
concentrate, or both compartments on the resistance of IEMs and the performance of RED
are studied in terms of the adsorption by electrostatic attraction, electromigration, and
macromolecule interaction.

2. Materials and Methods

CEMs and AEMs were purchased from Fujifilm (Fujifilm Manufacturing Europe
B.V.: Tilburg, Netherlands). Their detail properties are summarized in Table 1. All the
membranes were conditioned in 0.513 M NaCl solution, which corresponds to the average
salt concentration of seawater, for 24 h prior to use.

Table 1. Properties of ion-exchange membranes used in reverse electrodialysis [33].

Fujifilm Membranes AEM (Type 1) CEM (Type 10)

Type anion permselective cation permselective
Reinforcement polyolefin polyolefin
Thickness (µm) 125 135

Resistance 1 (Ω cm2) 1.3 2.0
Permselectivity 2 (-) 92 99

Water permeation (mL bar−1 m−2 h−1) 14 6.5
Burst strength (kg cm−2) 2.4 2.8

pH stability pH 2–10 pH 1–13
Temperature stability (◦C) - 60

1 Measured at 0.5 M NaCl. 2 Measured at 0.05−0.5 M NaCl.

Three different substances are used in this study as foulants and summarized in Table 2.
They are categorized into a negatively charged, positively charged, and non-charged group.
The criterion of the selection of the surfactants was molecular weight to minimize the effect
of the adsorption by macromolecule interaction between IEMs and surfactants. Thus, three
surfactants were chosen in a similar molecular weight range from a bunch of surfactants. The
common concentration of the three surfactants is 0.1 wt.% in a dialysate (or seawater, 0.513
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M NaCl) and a concentrate (or river freshwater, 0.017 M NaCl). Zeta potential of the foulant
solutions in NaCl electrolyte was measured by NanoBrook Omni (Brookhaven Instruments
Corp.: Holtsville, NY, USA).

Table 2. Summary of surfactants as foulants used in this study.

Surfactants Anionic Foulant Cationic Foulant Nonionic Foulant

Name sodium dodecyl
sulfate (SDS)

cetylpyridinium
chloride (CPC)

polyethylene glycol
(PEG) 400

Molecular weight
(g mol−1) 288 340 380-420

Molecular formula C12H25O4NaS C21H38ClN H(OCH2CH2)nOH

Chemical structure
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A bench-scale RED stack with twenty cell pairs (twenty one CEMs and twenty AEMs)
has been used at room temperature (22 ± 2 ◦C) as described in the previous study [7]. The
effective area of an IEM was 19.6 cm2. Polytetrafluoroethylene (PTFE) gaskets of 0.1 mm
thickness were mounted between the IEMs along with mesh-type spacers of 0.1 mm
thickness. A pair of 50 mm diameter Pt-coated titanium mesh electrodes (Sung Wing
Technology Co.: Kowloon, Hong Kong, China) were placed at both ends of the bench-scale
RED stack. The bench-scale RED stack is illustrated in Figure 1.
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Figure 1. Schematic diagram of a bench-scale RED system. Reprinted with permission from [7].

Two main streams and one electrode stream were supplied to the 20-cell-pair bench-
scale RED system. Two synthetic feed streams were seawater with either 0.513 M NaCl
as reference or 0.513 M NaCl + 0.1 wt. foulant and freshwater with 0.017 M NaCl as
reference or 0.017 M NaCl + 0.1 wt.% foulant at 2.5 mL/min (or 56.6 cm/min as linear
velocity). The electrode solution of 0.05 M K3[Fe(CN)6] (Junsei Chemical Co.: Tokyo, Japan),
0.05 M K4[Fe(CN)6] (Junsei Chemical Co.), and 1 M Na2SO4 (Junsei Chemical Co.) was
circulated through the RED system at 50 mL/min for the minimization of the effect of
water electrolysis on the performance of a RED system.

The procedure for all RED experiments consisted of the following steps: (1) The
RED stack was equilibrated and activated by circulating either 0.513 M NaCl or 0.513 M
NaCl + 0.1 wt. foulant as seawater and 0.017 M NaCl or 0.017 M NaCl + 0.1 wt.% foulant
as river freshwater for 15 min with no connection of a power supplier. (2) Open circuit
voltage (OCV) was measured for 1 min followed by the power density measurement using
a linear sweep voltammetry (LSV) with a scan rate of 40 mV/s. (3) While all the feed and
electrode streams were supplied to the RED system, the impedance of the bench-scale RED
stack was measured. (4) The procedure from the step (1) to (3) was repeatedly carried out
until 20 runs were finished.

OCV was averaged using the data recorded every three seconds for 1 min, and power
was calculated from the multiplication of voltage and current obtained from LSV by a
potentiostat/galvanostat with a frequency response analyzer (SP-150, Bio-Logic Science
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Instruments: Paris, France). The electrical impedance was also measured from 1 MHz to
1 mHz with amplitude of 10 mV. Impedance data at zero phase angle was directly used as
electrical resistance.

3. Results and Discussion

Figure 2 shows the schematic diagrams of the potential membrane fouling phenom-
ena in the presence of foulants in the concentrate stream (or river freshwater) or in the
dialysate stream (or seawater) in RED. When charged foulants exist in a river freshwater or
seawater stream, the foulants could be influenced by the adsorption by electromigration
and electrostatic force. The non-charged foulant could be only affected by the adsorption
by macromolecule interaction. If charged foulants are included in a river freshwater stream,
cationic or anionic foulants move toward cathode or anode (in other words, toward the
surface of the AEM or CEM in a river freshwater stream) by electromigration, but do not
interact with the AEM or CEM by the adsorption by electrostatic force due to electrostatic
repulsion, respectively. It means that fouling on the surface of IEMs in a river freshwater
stream could be suppressed. If charged foulants are included in a seawater stream, cationic
or anionic foulants move toward cathode or anode (in other words, toward the surface of
the CEM or AEM in a seawater stream) by electromigration and substantially interact with
the CEM or AEM by the adsorption by electrostatic force due to electrostatic attraction,
respectively. It means that fouling on the surface of either CEMs or AEMs in a seawater
stream could be significant. It could be expected that fouling by charged foulants could be
serious when the foulants are included in a seawater stream in RED. In the case of non-
charge foulants included in a seawater or a river freshwater, CEMs and/or AEMs could be
commonly influenced by the adsorption by macromolecule interaction. Of course, it could
be not affected to both CEMs and AEMs for non-charged foulants since the non-charged
surfactants with molecular weight as low as possible have been selected.
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Figure 2. Schematic diagrams of the potential IEM fouling phenomena in the presence of foulants in
a river stream (top) and a seawater stream (bottom) in RED with only one cell pair (the part within
the dashed square).

The possible fouling results occurred in RED systems with respect to the type of fouling
phenomena, the type of foulants, and the position of including foulants are summarized in
Table 3 as expected from the discussion of Figure 2.
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Table 3. Summary of the expected fouling results occurred in RED systems.

Main Fouling
Phenomena

Anionic Foulant Cationic Foulant Nonionic Foulant

Seawater/River Seawater/River Seawater/River

Adsorption by
electromigration

strong AEM fouling
/none

strong CEM fouling
/none none/none

Adsorption by
electrostatic attraction

strong AEM fouling
/weak AEM fouling

strong CEM fouling
/weak CEM fouling none/none

Adsorption by
macromolecule

interaction
none/none none/none IEM fouling

/IEM fouling

Figure 3 shows the variation of power density measured from the RED system in
absence of the anionic surfactant, SDS, and in the presence of SDS in either the river
freshwater stream or the seawater stream and both streams with respect to RED operation
cycle. Compared to the reference which is obtained from the RED system supplying 0.513
and 0.017 M NaCl as seawater and river freshwater, the anionic foulant in the seawater
stream fouled IEMs slightly due to weak adsorption to both CEM and AEM. However,
the anionic foulant in the river stream fouled substantially and continuously decreased
the power density with cycle. The anionic foulant in both streams represents a similar
power density of the anionic foulant in the river stream. It means that most of fouling
is ascribed to the anionic foulant in the river stream. The result is totally opposite to the
expectation summarized in Table 3. As illustrated in Figure 4a, the hypothesis should
show the worst fouling in the RED system supplying seawater containing anionic foulants
due to the simultaneous fouling by the adsorption by electromigration and electrostatic
attraction toward the surface of AEM in a seawater stream. The largest decrease in RED
power density is, however, caused by the adsorption by electrostatic attraction between
anionic foulants and AEM in a river stream as illustrated in Figure 4b.
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Figure 3. Variation of power density of the RED systems with the number of operation cycles with
respect to the presence of the anionic foulant (SDS) included in seawater, river, or both.
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Figure 4. Illustration of showing (a) the hypothesis and (b) the experimental result of the RED system with only one cell
pair (the part within the dashed square) supplying seawater and river containing anionic foulants.

Figure 5 represents that the cationic foulant, CPC, in the seawater stream weakly
fouled IEMs due to weak adsorption to both CEM and AEM. However, it shows stronger
fouling than the anionic foulant since the CPC has higher molecular weight than SDS.
Similar to the case of the anionic foulant, the cationic foulant in the river stream fouled
IEMs significantly. The cationic foulant in both streams shows a similar variation with
the cationic foulant in the river streams. The result is also opposite to the expected result
in Table 3. As illustrated in Figure 6a, the hypothesis should obtain the worst fouling in
the RED system supplying seawater containing cationic foulants due to the simultaneous
fouling by the adsorption by electromigration and electrostatic attraction toward the surface
of CEM in a seawater stream. Nevertheless, it is found that the significant decrease in RED
power density results from solely the adsorption by electrostatic attraction between cationic
foulants and CEM in a river stream as illustrated in Figure 6b. It is the same trend to show
worse fouling for a river stream containing charged (both negative and positive) foulants
than for a seawater stream containing the foulants. It is noted that the anionic foulant
shows accumulated fouling behavior. On the other hand, the cationic foulant shows no
accumulation of the foulant on the surface of the CEM in a river stream since the resistance
of the stack exhibits constant with the number of cycle.
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Figure 5. Variation of power density of the RED systems with the number of operation cycles with
respect to the presence of the cationic foulant (CPC) included in seawater, river, or both.
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Figure 6. Illustration of showing (a) the hypothesis and (b) the experimental result of the RED system with only one cell
pair (the part within the dashed square) supplying seawater and river containing cationic foulants.

Figure 7 represents that the non-charged foulant, PEG 400, in the seawater stream
strongly fouled IEMs due to strong adsorption to both CEM and AEM by macromolecule
interaction. It could be the effect of the longest carbon chain in PEG 400 among the foulants
used in this study on the electrical resistance of the stack. The non-charged foulant in a
river stream also fouled IEMs significantly. The non-charged foulant in both streams shows
a similar variation with the non-charged foulant in the seawater or river streams. The
result is well matched with the expected result in Table 3. As illustrated in Figure 8a,b, the
hypothesis and the real result should obtain the worst fouling in the RED system supplying
either seawater or river containing non-charged foulants due to strong adsorption toward
the surface of IEMs in either a seawater or a river stream.
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Figure 7. Variation of power density of the RED systems with the number of operation cycles with
respect to the presence of the non-charged foulant (PEG 400) included in seawater, river, or both.
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Figure 8. Illustration of showing (a) the hypothesis and (b) the experimental result of the RED system with only one cell
pair (the part within the dashed square) supplying seawater and river containing non-charged foulants.

In the case of the non-charged foulant, the proposed fouling mechanism well predicts
the real result of fouling in the RED system. For the charged foulants, it was found that the
opposite behavior occurs in the RED system. It was predicted that the fouling would be
the worst when the foulants exist in seawater streams. However, it was observed that the
worst fouling was shown when the foulants were present in river freshwater streams. To
find the reason of the unexpected fouling behavior, the zeta potential of the seawater and
the river freshwater in the presence of the charged foulants was measured to investigate
the effect of the concentration of the NaCl supporting electrolyte. Foulant solutions with
higher positive or negative zeta potential have higher potential to foul CEMs or AEMs,
respectively [20]. As shown in Figure 9, the zeta potential of four different solutions
was measured with the foulant concentration. Two different supporting electrolytes with
higher concentration than those used in this study as seawater and river freshwater, i.e.,
0.513 and 2.565 M NaCl, were used since the supporting electrolyte below 0.5 M did not
provide the reliable measurement of the zeta potential of the solutions. This would result
in magnifying the effect of supporting electrolyte concentration on the fouling to IEMs.
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In 0.513 M NaCl, the anionic and cationic foulant solutions represent strong negative and
positive zeta potential, but, in 2.565 M NaCl, the zeta potential of both solutions becomes
zero. It is believed that a similar result could be expected for the foulant solutions in
0.017 and 0.513 M NaCl supporting electrolytes. It means that the zeta potential of the
foulants in higher concentration of supporting electrolyte is significantly mitigated since
the Debye length of the charged foulants decreases due to the higher ionic strength of
seawater streams and causes to lower net electrostatic effect.
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Figure 9. Zeta potential of (a) the 0.001, 0.01, and 0.10 wt.% cationic foulant (CPC) (red square)
and the 0.001, 0.01, and 0.10 wt.% anionic foulant (SDS) (black square) in 0.513 M NaCl and (b) the
cationic foulant (CPC) (red square) and the anionic foulant (SDS) (black square) in 2.565 M NaCl.

4. Conclusions

Three different types of foulants, i.e., positively charged, negatively charged, and
non-charged surfactants, have been investigated to figure out the fouling behavior of
each foulant in a RED system in terms of the adsorption by electromigration, electrostatic
attraction, and macromolecule interaction. The foulants were present in seawater, river
freshwater, or both streams. In the case of the positively and negatively charged foulants, it
could be expected that the worst fouling behavior is obtained in the RED system supplying
the seawater in the presence of the charged foulants. However, the worst fouling tendency
has been observed for the river freshwater in the presence of the charged foulants. The
non-charged foulant was matched well with the proposed fouling behavior. The measure-
ment of the zeta potential of the charged foulant solutions in a lower and a higher NaCl
concentrations as supporting electrolyte resulted in the possible mechanism that a decrease
in Debye length weakens the net electrostatic interaction between the charged foulants and
the oppositely charged functional groups of AEM or CEM to make the fouling tendency
less. It could foul IEMs less and result in maintaining RED performance longer. It reveals
that, in RED systems, non-charged foulants or charged foulants present in river freshwater
streams should be taken into account very cautiously by means of thorough anti-fouling
control.
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